# Using Excell to Determine Triples?

#### cdrake

##### Member
Question: How does one use excell to determine triple pairings in a 649 data set. I downloaded lottostatistics and I haven't noticed any feature that can perform this task. I have loaded the data analysis toolpak for excell97 and I haven't seen any function that can perform this task. Thank you for your time. cdrake out.

#### GillesD

##### Member
Triples in Excel

cdrake

Do not expect Excel to provide you with lottery-specific analysis functions. The data analysis toolpak is for standard statistical analysis (very useful for some applications but more general in nature).

In Excel, you can use VBA to perform the analysis for doubles, triples, ... For triples, the principle is quite simple: in a draw, there are 20 3-number combinations and overall there 18,424 possible 3-number combinations (from 1-2-3 to 47-48-49). Basically, for each draw, you determine the 20 3-number combinations and keep counting those that you have against all 18,424 combinations. At the end, you have the frequency for each triple.

I have the VBA code for this but it is not very efficient. I will try to improve it and post it here.

#### GillesD

##### Member
Triples in Excel (2)

In Excel, the macro listed below will calculate the frequency of each triple (from 1-2-3 to 47-48-49) for all draws of a 6/49 lottery. The bonus number is not considered and the macro will work with up to 2500 draws. The frequency of each triple will be given on the sheet “Triples” and then Excel’s functions and commands can be used for analyzing this information.

Setup
In a sheet named “Data”, place all the results of the 6/49 lottery; the first row must contain labels for each column. Starting on the second row, individual numbers should be listed with draw number in column A, then N1, N2, … to N6 in columns B to G. An empty sheet named “Triples” must also be available. At the end, the first three columns (A-B-C) will contain the numbers for a triple and in column D, you will get the number of times this triple occured.

Macro
Option Explicit
Option Base 1

Sub Triples()
Dim I As Integer, J As Integer, K As Integer
Dim nNo(2500, 6) As Integer
Dim nX3(49, 49, 49) As Integer, nDraw As Integer
Application.ScreenUpdating = False
Sheets("Data").Select
Range("A2").Select
Do While ActiveCell.Value > 0
nDraw = ActiveCell.Value
ActiveCell.Offset(1, 0).Select
Loop
Range("A1").Select
For I = 1 To nDraw
For J = 1 To 6
nNo(I, J) = ActiveCell.Offset(I, J).Value
Next J
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 3)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 3)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 4)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 4)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 5)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 5)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 4)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 4)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 5)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 5)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 4), nNo(I, 5)) = nX3(nNo(I, 1), nNo(I, 4), nNo(I, 5)) + 1
nX3(nNo(I, 1), nNo(I, 4), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 4), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 4)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 4)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 5)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 5)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 6)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 6)) + 1
nX3(nNo(I, 2), nNo(I, 4), nNo(I, 5)) = nX3(nNo(I, 2), nNo(I, 4), nNo(I, 5)) + 1
nX3(nNo(I, 2), nNo(I, 4), nNo(I, 6)) = nX3(nNo(I, 2), nNo(I, 4), nNo(I, 6)) + 1
nX3(nNo(I, 2), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 2), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 3), nNo(I, 4), nNo(I, 5)) = nX3(nNo(I, 3), nNo(I, 4), nNo(I, 5)) + 1
nX3(nNo(I, 3), nNo(I, 4), nNo(I, 6)) = nX3(nNo(I, 3), nNo(I, 4), nNo(I, 6)) + 1
nX3(nNo(I, 3), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 3), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 4), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 4), nNo(I, 5), nNo(I, 6)) + 1
Next I
Range("A1").Select
Sheets("Triples").Select
Range("A1").Select
ActiveCell.Offset(0, 0).Value = "N1"
ActiveCell.Offset(0, 1).Value = "N2"
ActiveCell.Offset(0, 2).Value = "N1"
ActiveCell.Offset(0, 3).Value = "# times"
For I = 1 To 47
For J = I + 1 To 48
For K = J + 1 To 49
ActiveCell.Offset(1, 0).Select
ActiveCell.Offset(0, 0).Value = I
ActiveCell.Offset(0, 1).Value = J
ActiveCell.Offset(0, 2).Value = K
ActiveCell.Offset(0, 3).Value = nX3(I, J, K)
Next K
Next J
Next I
Application.ScreenUpdating = True
Range("A1").Select
End Sub

#### Beaker

##### Member
Beaker said:
Can you do all 18,424 triples in that SW?

I bet GillesD could write a quick macro for this in VB. I know he has one for triple consecutives but not ALL triples
I thought you might have this

#### Nick Koutras

##### Member
cdrake said:
Question: How does one use excell to determine triple pairings in a 649 data set. I downloaded lottostatistics and I haven't noticed any feature that can perform this task. I have loaded the data analysis toolpak for excell97 and I haven't seen any function that can perform this task. Thank you for your time. cdrake out.

LottoStatisticsXL does that and more...
*Any* N-tuplet for any Game.

So look at the N-tuplets options

You can specify "Duration" = the range
of draws you wish to display the N-tuplets for.

In your case N-tuplets are 3-tuplets.

If any improvments are in your mind just say so.

#### charles2

##### Member
Nick for that N-tuplets option, why is there sometimes some cells in a green color? is it the sets with most hits?

also what exactly does the HiLite NB… setting do, i always leave it at 11?

thanks

#### Nick Koutras

##### Member
charles2 said:
Nick for that N-tuplets option, why is there sometimes some cells in a green color? is it the sets with most hits?

also what exactly does the HiLite NB… setting do, i always leave it at 11?

thanks

The HiLite identifies the N-tuplets that
includes that HiLite number.

So if you wish to see the Tuplet that
let say has the number 01 then you enter
01 under HiLite and all the Tuplets like

0102
0103
.....
will be marked.

#### charles2

##### Member
i see, now it makes sense, thanks Nick

Also, when it gives you the output, is the 1st set the one with the most hits and goes down in decreasing order? or all they all the same hits?

#### thornc

##### Member
And, thornc, you should not bet when the odds are against you. But surely you know that since you play the lottery.

See I would have won the bet also... You did post a macro to create this triples!

And as I said and Nick confirmed LottoStatistics can be used to do it also!

#### PAB

##### Member
Hi GillesD,

Would it be Possible for you to Include the Bonus Number in your Excellent Macro for Triples Please. I think it could Possibly be Done Using Case Statements.

All the Best.
PAB

#### BushHappy

##### Member
Macro

GillesD,

Please can you explain in detail for a person who has no experience with macros how to put your macro into a spreadsheet. I have already created the sheets, Data and Triples.

Cheers,
BushHappy

#### PAB

##### Member
Hi BushHappy,

In your Excel File, Click on Tools/Macro/Macros, OR you could Use ALT-F8, and Type in the Sub Name Triples, and then Click Create. This will take you into Microsoft Visual Basic [Module1 (Code)]. Copy the Macro Coding Above and Paste it into the Module. Click File and then Click Close and Return to Microsoft Excel.
To Run the Macro, Click Tools/Macro/Macros, Make Sure the Triples Macro is Highlighted and Click Run.
The Results will be Output to the Sheet Named Data Starting in Cell A1.

Good Luck .
All the Best.
PAB

Last edited:

#### BushHappy

##### Member
PAB,

Thanks, its working now.

When I 1st tried this, it did not work because I copied and pasted the whole text from 'Macro'

When I copied the text from 'Dim I As Integer, J As Integer, K As Integer', it worked properly.

Cheers,
BushHappy

#### GillesD

##### Member
Triples with bonus number

PAB This should provide what you want

In Excel, the macro TriplesB listed below will calculate the frequency of each triple (from 1-2-3 to 47-48-49) for draws of a 6/49 lottery. Here the bonus number is considered and the macro will work with up to 2500 draws. The frequency of each triple will be given on a sheet named “TriplesB”.

Setup

In a sheet named “DataB”, place all the results of the 6/49 lottery; the first row must contain labels for each column. Starting on the second row, individual numbers should be listed with draw number in column A, then N1, N2, … to N7 in columns B to H. The 7 numbers must be placed in ascending order. If your values are not in ascending order, you may want to use the function SMALL(Range,N) to place them in order.

An empty sheet named “TriplesB” must also be available. At the end of the macro, the first three columns (A, B and C) will contain the numbers for all 18,424 triples and in column D, you will get the number of times each triple occurred.

Macro

Option Explicit
Option Base 1
Sub TriplesB()
Dim I As Integer, J As Integer, K As Integer
Dim nNo(2500, 7) As Integer
Dim nX3(49, 49, 49) As Integer, nDraw As Integer
Application.ScreenUpdating = False
Sheets("DataB").Select
Range("A2").Select
Do While ActiveCell.Value > 0
nDraw = ActiveCell.Value
ActiveCell.Offset(1, 0).Select
Loop
Range("A1").Select
For I = 1 To nDraw
For J = 1 To 7
nNo(I, J) = ActiveCell.Offset(I, J).Value
Next J
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 3)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 3)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 4)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 4)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 5)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 5)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 2), nNo(I, 7)) = nX3(nNo(I, 1), nNo(I, 2), nNo(I, 7)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 4)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 4)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 5)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 5)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 3), nNo(I, 7)) = nX3(nNo(I, 1), nNo(I, 3), nNo(I, 7)) + 1
nX3(nNo(I, 1), nNo(I, 4), nNo(I, 5)) = nX3(nNo(I, 1), nNo(I, 4), nNo(I, 5)) + 1
nX3(nNo(I, 1), nNo(I, 4), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 4), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 4), nNo(I, 7)) = nX3(nNo(I, 1), nNo(I, 4), nNo(I, 7)) + 1
nX3(nNo(I, 1), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 1), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 1), nNo(I, 5), nNo(I, 7)) = nX3(nNo(I, 1), nNo(I, 5), nNo(I, 7)) + 1
nX3(nNo(I, 1), nNo(I, 6), nNo(I, 7)) = nX3(nNo(I, 1), nNo(I, 6), nNo(I, 7)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 4)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 4)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 5)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 5)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 6)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 6)) + 1
nX3(nNo(I, 2), nNo(I, 3), nNo(I, 7)) = nX3(nNo(I, 2), nNo(I, 3), nNo(I, 7)) + 1
nX3(nNo(I, 2), nNo(I, 4), nNo(I, 5)) = nX3(nNo(I, 2), nNo(I, 4), nNo(I, 5)) + 1
nX3(nNo(I, 2), nNo(I, 4), nNo(I, 6)) = nX3(nNo(I, 2), nNo(I, 4), nNo(I, 6)) + 1
nX3(nNo(I, 2), nNo(I, 4), nNo(I, 7)) = nX3(nNo(I, 2), nNo(I, 4), nNo(I, 7)) + 1
nX3(nNo(I, 2), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 2), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 2), nNo(I, 5), nNo(I, 7)) = nX3(nNo(I, 2), nNo(I, 5), nNo(I, 7)) + 1
nX3(nNo(I, 2), nNo(I, 6), nNo(I, 7)) = nX3(nNo(I, 2), nNo(I, 6), nNo(I, 7)) + 1
nX3(nNo(I, 3), nNo(I, 4), nNo(I, 5)) = nX3(nNo(I, 3), nNo(I, 4), nNo(I, 5)) + 1
nX3(nNo(I, 3), nNo(I, 4), nNo(I, 6)) = nX3(nNo(I, 3), nNo(I, 4), nNo(I, 6)) + 1
nX3(nNo(I, 3), nNo(I, 4), nNo(I, 7)) = nX3(nNo(I, 3), nNo(I, 4), nNo(I, 7)) + 1
nX3(nNo(I, 3), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 3), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 3), nNo(I, 5), nNo(I, 7)) = nX3(nNo(I, 3), nNo(I, 5), nNo(I, 7)) + 1
nX3(nNo(I, 3), nNo(I, 6), nNo(I, 7)) = nX3(nNo(I, 3), nNo(I, 6), nNo(I, 7)) + 1
nX3(nNo(I, 4), nNo(I, 5), nNo(I, 6)) = nX3(nNo(I, 4), nNo(I, 5), nNo(I, 6)) + 1
nX3(nNo(I, 4), nNo(I, 5), nNo(I, 7)) = nX3(nNo(I, 4), nNo(I, 5), nNo(I, 7)) + 1
nX3(nNo(I, 4), nNo(I, 6), nNo(I, 7)) = nX3(nNo(I, 4), nNo(I, 6), nNo(I, 7)) + 1
nX3(nNo(I, 5), nNo(I, 6), nNo(I, 7)) = nX3(nNo(I, 5), nNo(I, 6), nNo(I, 7)) + 1
Next I
Range("A1").Select
Sheets("TriplesB").Select
Range("A1").Select
ActiveCell.Offset(0, 0).Value = "N1"
ActiveCell.Offset(0, 1).Value = "N2"
ActiveCell.Offset(0, 2).Value = "N1"
ActiveCell.Offset(0, 3).Value = "# times"
For I = 1 To 47
For J = I + 1 To 48
For K = J + 1 To 49
ActiveCell.Offset(1, 0).Select
ActiveCell.Offset(0, 0).Value = I
ActiveCell.Offset(0, 1).Value = J
ActiveCell.Offset(0, 2).Value = K
ActiveCell.Offset(0, 3).Value = nX3(I, J, K)
Next K
Next J
Next I
Application.ScreenUpdating = True
Range("A1").Select
End Sub

#### PAB

##### Member
Hi GillesD,

Thanks Very Much for the Macro.
What I am Attempting to do is to have the Results with NO Bonus Included ( as Per the Macro Above ) in One Column, and then in the Next Column have the Results Including the Bonus.
The nX3 Works Fine and Produces the Correct Number of Times Each Triple ( Excluding the Bonus ) has be Drawn.
The nX3B is what I am Using for the Bonus Number to be Included.
I have Tried to Set it Up Using Case Statements for the Bonus Number Included which I think you have Used Before.
This is my Attempt ( I have Just Listed the Bit that is Relevant ), But Unfortunately it is NOT Producing the Correct Results.
I Wonder if you could have a Quick Look at it and Tell me where I have gone Wrong Please.
I have had to Split this Post Because of the Number of Characters. Here is the First Part.

For i = 1 To nDraw
For k = 1 To 7
nNo(k) = ActiveCell.Offset(i, k).Value
Next k
nX3(nNo(1), nNo(2), nNo(3)) = nX3(nNo(1), nNo(2), nNo(3)) + 1
nX3(nNo(1), nNo(2), nNo(4)) = nX3(nNo(1), nNo(2), nNo(4)) + 1
nX3(nNo(1), nNo(2), nNo(5)) = nX3(nNo(1), nNo(2), nNo(5)) + 1
nX3(nNo(1), nNo(2), nNo(6)) = nX3(nNo(1), nNo(2), nNo(6)) + 1
nX3(nNo(1), nNo(3), nNo(4)) = nX3(nNo(1), nNo(3), nNo(4)) + 1
nX3(nNo(1), nNo(3), nNo(5)) = nX3(nNo(1), nNo(3), nNo(5)) + 1
nX3(nNo(1), nNo(3), nNo(6)) = nX3(nNo(1), nNo(3), nNo(6)) + 1
nX3(nNo(1), nNo(4), nNo(5)) = nX3(nNo(1), nNo(4), nNo(5)) + 1
nX3(nNo(1), nNo(4), nNo(6)) = nX3(nNo(1), nNo(4), nNo(6)) + 1
nX3(nNo(1), nNo(5), nNo(6)) = nX3(nNo(1), nNo(5), nNo(6)) + 1
nX3(nNo(2), nNo(3), nNo(4)) = nX3(nNo(2), nNo(3), nNo(4)) + 1
nX3(nNo(2), nNo(3), nNo(5)) = nX3(nNo(2), nNo(3), nNo(5)) + 1
nX3(nNo(2), nNo(3), nNo(6)) = nX3(nNo(2), nNo(3), nNo(6)) + 1
nX3(nNo(2), nNo(4), nNo(5)) = nX3(nNo(2), nNo(4), nNo(5)) + 1
nX3(nNo(2), nNo(4), nNo(6)) = nX3(nNo(2), nNo(4), nNo(6)) + 1
nX3(nNo(2), nNo(5), nNo(6)) = nX3(nNo(2), nNo(5), nNo(6)) + 1
nX3(nNo(3), nNo(4), nNo(5)) = nX3(nNo(3), nNo(4), nNo(5)) + 1
nX3(nNo(3), nNo(4), nNo(6)) = nX3(nNo(3), nNo(4), nNo(6)) + 1
nX3(nNo(3), nNo(5), nNo(6)) = nX3(nNo(3), nNo(5), nNo(6)) + 1
nX3(nNo(4), nNo(5), nNo(6)) = nX3(nNo(4), nNo(5), nNo(6)) + 1

The Second Part is Below.

#### PAB

##### Member
Here is the Second Part.

Select Case nNo(7)
Case Is < nNo(1)
nX3B(nNo(7), nNo(1), nNo(2)) = nX3B(nNo(7), nNo(1), nNo(2)) + 1
nX3B(nNo(7), nNo(1), nNo(3)) = nX3B(nNo(7), nNo(1), nNo(3)) + 1
nX3B(nNo(7), nNo(1), nNo(4)) = nX3B(nNo(7), nNo(1), nNo(4)) + 1
nX3B(nNo(7), nNo(1), nNo(5)) = nX3B(nNo(7), nNo(1), nNo(5)) + 1
nX3B(nNo(7), nNo(1), nNo(6)) = nX3B(nNo(7), nNo(1), nNo(6)) + 1
nX3B(nNo(7), nNo(2), nNo(3)) = nX3B(nNo(7), nNo(2), nNo(3)) + 1
nX3B(nNo(7), nNo(2), nNo(4)) = nX3B(nNo(7), nNo(2), nNo(4)) + 1
nX3B(nNo(7), nNo(2), nNo(5)) = nX3B(nNo(7), nNo(2), nNo(5)) + 1
nX3B(nNo(7), nNo(2), nNo(6)) = nX3B(nNo(7), nNo(2), nNo(6)) + 1
nX3B(nNo(7), nNo(3), nNo(4)) = nX3B(nNo(7), nNo(3), nNo(4)) + 1
nX3B(nNo(7), nNo(3), nNo(5)) = nX3B(nNo(7), nNo(3), nNo(5)) + 1
nX3B(nNo(7), nNo(3), nNo(6)) = nX3B(nNo(7), nNo(3), nNo(6)) + 1
nX3B(nNo(7), nNo(4), nNo(5)) = nX3B(nNo(7), nNo(4), nNo(5)) + 1
nX3B(nNo(7), nNo(4), nNo(6)) = nX3B(nNo(7), nNo(4), nNo(6)) + 1
nX3B(nNo(7), nNo(5), nNo(6)) = nX3B(nNo(7), nNo(5), nNo(6)) + 1
Case Is < nNo(2)
nX3B(nNo(1), nNo(2), nNo(7)) = nX3B(nNo(1), nNo(2), nNo(7)) + 1
nX3B(nNo(1), nNo(3), nNo(7)) = nX3B(nNo(1), nNo(3), nNo(7)) + 1
nX3B(nNo(1), nNo(4), nNo(7)) = nX3B(nNo(1), nNo(4), nNo(7)) + 1
nX3B(nNo(1), nNo(5), nNo(7)) = nX3B(nNo(1), nNo(5), nNo(7)) + 1
nX3B(nNo(1), nNo(6), nNo(7)) = nX3B(nNo(1), nNo(6), nNo(7)) + 1
nX3B(nNo(7), nNo(2), nNo(3)) = nX3B(nNo(7), nNo(2), nNo(3)) + 1
nX3B(nNo(7), nNo(2), nNo(4)) = nX3B(nNo(7), nNo(2), nNo(4)) + 1
nX3B(nNo(7), nNo(2), nNo(5)) = nX3B(nNo(7), nNo(2), nNo(5)) + 1
nX3B(nNo(7), nNo(2), nNo(6)) = nX3B(nNo(7), nNo(2), nNo(6)) + 1
nX3B(nNo(7), nNo(3), nNo(4)) = nX3B(nNo(7), nNo(3), nNo(4)) + 1
nX3B(nNo(7), nNo(3), nNo(5)) = nX3B(nNo(7), nNo(3), nNo(5)) + 1
nX3B(nNo(7), nNo(3), nNo(6)) = nX3B(nNo(7), nNo(3), nNo(6)) + 1
nX3B(nNo(7), nNo(4), nNo(5)) = nX3B(nNo(7), nNo(4), nNo(5)) + 1
nX3B(nNo(7), nNo(4), nNo(6)) = nX3B(nNo(7), nNo(4), nNo(6)) + 1
nX3B(nNo(7), nNo(5), nNo(6)) = nX3B(nNo(7), nNo(5), nNo(6)) + 1
Case Is < nNo(3)
nX3B(nNo(1), nNo(2), nNo(7)) = nX3B(nNo(1), nNo(2), nNo(7)) + 1
nX3B(nNo(1), nNo(3), nNo(7)) = nX3B(nNo(1), nNo(3), nNo(7)) + 1
nX3B(nNo(1), nNo(4), nNo(7)) = nX3B(nNo(1), nNo(4), nNo(7)) + 1
nX3B(nNo(1), nNo(5), nNo(7)) = nX3B(nNo(1), nNo(5), nNo(7)) + 1
nX3B(nNo(1), nNo(6), nNo(7)) = nX3B(nNo(1), nNo(6), nNo(7)) + 1
nX3B(nNo(2), nNo(3), nNo(7)) = nX3B(nNo(2), nNo(3), nNo(7)) + 1
nX3B(nNo(2), nNo(4), nNo(7)) = nX3B(nNo(2), nNo(4), nNo(7)) + 1
nX3B(nNo(2), nNo(5), nNo(7)) = nX3B(nNo(2), nNo(5), nNo(7)) + 1
nX3B(nNo(2), nNo(6), nNo(7)) = nX3B(nNo(2), nNo(6), nNo(7)) + 1
nX3B(nNo(7), nNo(3), nNo(4)) = nX3B(nNo(7), nNo(3), nNo(4)) + 1
nX3B(nNo(7), nNo(3), nNo(5)) = nX3B(nNo(7), nNo(3), nNo(5)) + 1
nX3B(nNo(7), nNo(3), nNo(6)) = nX3B(nNo(7), nNo(3), nNo(6)) + 1
nX3B(nNo(7), nNo(4), nNo(5)) = nX3B(nNo(7), nNo(4), nNo(5)) + 1
nX3B(nNo(7), nNo(4), nNo(6)) = nX3B(nNo(7), nNo(4), nNo(6)) + 1
nX3B(nNo(7), nNo(5), nNo(6)) = nX3B(nNo(7), nNo(5), nNo(6)) + 1
Case Is < nNo(4)
nX3B(nNo(1), nNo(2), nNo(7)) = nX3B(nNo(1), nNo(2), nNo(7)) + 1
nX3B(nNo(1), nNo(3), nNo(7)) = nX3B(nNo(1), nNo(3), nNo(7)) + 1
nX3B(nNo(1), nNo(4), nNo(7)) = nX3B(nNo(1), nNo(4), nNo(7)) + 1
nX3B(nNo(1), nNo(5), nNo(7)) = nX3B(nNo(1), nNo(5), nNo(7)) + 1
nX3B(nNo(1), nNo(6), nNo(7)) = nX3B(nNo(1), nNo(6), nNo(7)) + 1
nX3B(nNo(2), nNo(3), nNo(7)) = nX3B(nNo(2), nNo(3), nNo(7)) + 1
nX3B(nNo(2), nNo(4), nNo(7)) = nX3B(nNo(2), nNo(4), nNo(7)) + 1
nX3B(nNo(2), nNo(5), nNo(7)) = nX3B(nNo(2), nNo(5), nNo(7)) + 1
nX3B(nNo(2), nNo(6), nNo(7)) = nX3B(nNo(2), nNo(6), nNo(7)) + 1
nX3B(nNo(3), nNo(4), nNo(7)) = nX3B(nNo(3), nNo(4), nNo(7)) + 1
nX3B(nNo(3), nNo(5), nNo(7)) = nX3B(nNo(3), nNo(5), nNo(7)) + 1
nX3B(nNo(3), nNo(6), nNo(7)) = nX3B(nNo(3), nNo(6), nNo(7)) + 1
nX3B(nNo(7), nNo(4), nNo(5)) = nX3B(nNo(7), nNo(4), nNo(5)) + 1
nX3B(nNo(7), nNo(4), nNo(6)) = nX3B(nNo(7), nNo(4), nNo(6)) + 1
nX3B(nNo(7), nNo(5), nNo(6)) = nX3B(nNo(7), nNo(5), nNo(6)) + 1
Case Is < nNo(5)
nX3B(nNo(1), nNo(2), nNo(7)) = nX3B(nNo(1), nNo(2), nNo(7)) + 1
nX3B(nNo(1), nNo(3), nNo(7)) = nX3B(nNo(1), nNo(3), nNo(7)) + 1
nX3B(nNo(1), nNo(4), nNo(7)) = nX3B(nNo(1), nNo(4), nNo(7)) + 1
nX3B(nNo(1), nNo(5), nNo(7)) = nX3B(nNo(1), nNo(5), nNo(7)) + 1
nX3B(nNo(1), nNo(6), nNo(7)) = nX3B(nNo(1), nNo(6), nNo(7)) + 1
nX3B(nNo(2), nNo(3), nNo(7)) = nX3B(nNo(2), nNo(3), nNo(7)) + 1
nX3B(nNo(2), nNo(4), nNo(7)) = nX3B(nNo(2), nNo(4), nNo(7)) + 1
nX3B(nNo(2), nNo(5), nNo(7)) = nX3B(nNo(2), nNo(5), nNo(7)) + 1
nX3B(nNo(2), nNo(6), nNo(7)) = nX3B(nNo(2), nNo(6), nNo(7)) + 1
nX3B(nNo(3), nNo(4), nNo(7)) = nX3B(nNo(3), nNo(4), nNo(7)) + 1
nX3B(nNo(3), nNo(5), nNo(7)) = nX3B(nNo(3), nNo(5), nNo(7)) + 1
nX3B(nNo(3), nNo(6), nNo(7)) = nX3B(nNo(3), nNo(6), nNo(7)) + 1
nX3B(nNo(4), nNo(5), nNo(7)) = nX3B(nNo(4), nNo(5), nNo(7)) + 1
nX3B(nNo(4), nNo(6), nNo(7)) = nX3B(nNo(4), nNo(6), nNo(7)) + 1
nX3B(nNo(7), nNo(5), nNo(6)) = nX3B(nNo(7), nNo(5), nNo(6)) + 1
Case Is < nNo(6)
nX3B(nNo(1), nNo(2), nNo(7)) = nX3B(nNo(1), nNo(2), nNo(7)) + 1
nX3B(nNo(1), nNo(3), nNo(7)) = nX3B(nNo(1), nNo(3), nNo(7)) + 1
nX3B(nNo(1), nNo(4), nNo(7)) = nX3B(nNo(1), nNo(4), nNo(7)) + 1
nX3B(nNo(1), nNo(5), nNo(7)) = nX3B(nNo(1), nNo(5), nNo(7)) + 1
nX3B(nNo(1), nNo(6), nNo(7)) = nX3B(nNo(1), nNo(6), nNo(7)) + 1
nX3B(nNo(2), nNo(3), nNo(7)) = nX3B(nNo(2), nNo(3), nNo(7)) + 1
nX3B(nNo(2), nNo(4), nNo(7)) = nX3B(nNo(2), nNo(4), nNo(7)) + 1
nX3B(nNo(2), nNo(5), nNo(7)) = nX3B(nNo(2), nNo(5), nNo(7)) + 1
nX3B(nNo(2), nNo(6), nNo(7)) = nX3B(nNo(2), nNo(6), nNo(7)) + 1
nX3B(nNo(3), nNo(4), nNo(7)) = nX3B(nNo(3), nNo(4), nNo(7)) + 1
nX3B(nNo(3), nNo(5), nNo(7)) = nX3B(nNo(3), nNo(5), nNo(7)) + 1
nX3B(nNo(3), nNo(6), nNo(7)) = nX3B(nNo(3), nNo(6), nNo(7)) + 1
nX3B(nNo(4), nNo(5), nNo(7)) = nX3B(nNo(4), nNo(5), nNo(7)) + 1
nX3B(nNo(4), nNo(6), nNo(7)) = nX3B(nNo(4), nNo(6), nNo(7)) + 1
nX3B(nNo(5), nNo(6), nNo(7)) = nX3B(nNo(5), nNo(6), nNo(7)) + 1
Case Is > nNo(6)
nX3B(nNo(1), nNo(2), nNo(7)) = nX3B(nNo(1), nNo(2), nNo(7)) + 1
nX3B(nNo(1), nNo(3), nNo(7)) = nX3B(nNo(1), nNo(3), nNo(7)) + 1
nX3B(nNo(1), nNo(4), nNo(7)) = nX3B(nNo(1), nNo(4), nNo(7)) + 1
nX3B(nNo(1), nNo(5), nNo(7)) = nX3B(nNo(1), nNo(5), nNo(7)) + 1
nX3B(nNo(1), nNo(6), nNo(7)) = nX3B(nNo(1), nNo(6), nNo(7)) + 1
nX3B(nNo(2), nNo(3), nNo(7)) = nX3B(nNo(2), nNo(3), nNo(7)) + 1
nX3B(nNo(2), nNo(4), nNo(7)) = nX3B(nNo(2), nNo(4), nNo(7)) + 1
nX3B(nNo(2), nNo(5), nNo(7)) = nX3B(nNo(2), nNo(5), nNo(7)) + 1
nX3B(nNo(2), nNo(6), nNo(7)) = nX3B(nNo(2), nNo(6), nNo(7)) + 1
nX3B(nNo(3), nNo(4), nNo(7)) = nX3B(nNo(3), nNo(4), nNo(7)) + 1
nX3B(nNo(3), nNo(5), nNo(7)) = nX3B(nNo(3), nNo(5), nNo(7)) + 1
nX3B(nNo(3), nNo(6), nNo(7)) = nX3B(nNo(3), nNo(6), nNo(7)) + 1
nX3B(nNo(4), nNo(5), nNo(7)) = nX3B(nNo(4), nNo(5), nNo(7)) + 1
nX3B(nNo(4), nNo(6), nNo(7)) = nX3B(nNo(4), nNo(6), nNo(7)) + 1
nX3B(nNo(5), nNo(6), nNo(7)) = nX3B(nNo(5), nNo(6), nNo(7)) + 1
End Select
Next i

All the Best.
PAB

#### tomtom

##### Member
Well, I checked once for those triples and was quite after getting results...especially seeing a quite few triples - repeats from the last draw. It was a RNG lottery though... However, it would be interesting to check in how many ways those triples can be combined...since feel tired I'm not sure if is it something like Combine(18424,18424) or Combine(18424,2), with somehow observing ones with same 1-3 numbers...

Last edited:

#### GillesD

##### Member
2 triples combination

I am not 100% sure but I think you would get what you want by multiplying the number of possibiities of 3 numbers out of the 49 by the number of possibiities of 3 numbers out of 46 remaining ones. In Excel, this would be:

= COMBIN(49,3)*COMBIN(46,3) = 18,424 x 15,180 = 279,676,320

#### tomtom

##### Member
Re: 2 triples combination

GillesD said:
I am not 100% sure but I think you would get what you want by multiplying the number of possibiities of 3 numbers out of the 49 by the number of possibiities of 3 numbers out of 46 remaining ones. In Excel, this would be:

= COMBIN(49,3)*COMBIN(46,3) = 18,424 x 15,180 = 279,676,320

WOW...I was sure it would be a pretty big number...so, it seems it's moving from the 1:13,983,816 odds to the 1:279,676,320 odds then...